{ "id": "1712.04889", "version": "v1", "published": "2017-12-13T17:58:40.000Z", "updated": "2017-12-13T17:58:40.000Z", "title": "The Edge Universality of Correlated Matrices", "authors": [ "Arka Adhikari", "Ziliang Che" ], "comment": "24 pages", "categories": [ "math.PR" ], "abstract": "We consider a Gaussian random matrix with correlated entries that have a power law decay of order $d>2$ and prove universality for the extreme eigenvalues. A local law is proved using the self-consistent equation combined with a decomposition of the matrix. This local law along with concentration of eigenvalues around the edge allows us to get an bound for extreme eigenvalues. Using a recent result of the Dyson-Brownian motion, we prove universality of extreme eigenvalues.", "revisions": [ { "version": "v1", "updated": "2017-12-13T17:58:40.000Z" } ], "analyses": { "keywords": [ "edge universality", "correlated matrices", "extreme eigenvalues", "local law", "power law decay" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }