{ "id": "1712.04253", "version": "v1", "published": "2017-12-12T11:57:15.000Z", "updated": "2017-12-12T11:57:15.000Z", "title": "Upper bounds for Z$_1$-eigenvalues of generalized Hilbert tensors", "authors": [ "Juan Meng", "Yisheng Song" ], "comment": "9 pages", "categories": [ "math.OC" ], "abstract": "In this paper, we introduce the concept of Z$_1$-eigenvalue to infinite dimensional generalized Hilbert tensors (hypermatrix) $\\mathcal{H}_\\lambda^{\\infty}=(\\mathcal{H}_{i_{1}i_{2}\\cdots i_{m}})$, $$ \\mathcal{H}_{i_{1}i_{2}\\cdots i_{m}}=\\frac{1}{i_{1}+i_{2}+\\cdots i_{m}+\\lambda},\\ \\lambda\\in \\mathbb{R}\\setminus\\mathbb{Z}^-;\\ i_{1},i_{2},\\cdots,i_{m}=0,1,2,\\cdots,n,\\cdots, $$ and proved that its $Z_1$-spectral radius is not larger than $\\pi$ for $\\lambda>\\frac{1}{2}$, and is at most $\\frac{\\pi}{\\sin{\\lambda\\pi}}$ for $\\frac{1}{2}\\geq \\lambda>0$. Besides, the upper bound of $Z_1$-spectral radius of an $m$th-order $n$-dimensional generalized Hilbert tensor $\\mathcal{H}_\\lambda^n$ is obtained also, and such a bound only depends on $n$ and $\\lambda$.", "revisions": [ { "version": "v1", "updated": "2017-12-12T11:57:15.000Z" } ], "analyses": { "keywords": [ "upper bound", "eigenvalue", "infinite dimensional generalized hilbert tensors", "spectral radius", "hypermatrix" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }