{ "id": "1712.04214", "version": "v1", "published": "2017-12-12T10:28:52.000Z", "updated": "2017-12-12T10:28:52.000Z", "title": "Explicit Small Heights in Infinite Non-Abelian Extensions", "authors": [ "Linda Frey" ], "comment": "23 pages, comments welcome", "categories": [ "math.NT" ], "abstract": "Let $E$ be an elliptic curve over the rationals. We will consider the infinite extension $\\mathbb{Q}(E_{\\text{tor}})$ of the rationals where we adjoin all coordinates of torsion points of $E$. In this paper we will prove an explicit lower bound for the height of non-zero elements in $\\mathbb{Q}(E_{\\text{tor}})$ that are not a root of unity, only depending on the conductor of the elliptic curve. As a side result we will give an explicit bound for a small supersingular prime for an elliptic curve.", "revisions": [ { "version": "v1", "updated": "2017-12-12T10:28:52.000Z" } ], "analyses": { "subjects": [ "11G05", "11G50" ], "keywords": [ "explicit small heights", "infinite non-abelian extensions", "elliptic curve", "explicit lower bound", "small supersingular prime" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }