{ "id": "1712.04173", "version": "v1", "published": "2017-12-12T08:36:14.000Z", "updated": "2017-12-12T08:36:14.000Z", "title": "Computing the associatied cycles of certain Harish-Chandra modules", "authors": [ "Salah Mehdi", "Pavle Pandzic", "David Vogan", "Roger Zierau" ], "categories": [ "math.RT" ], "abstract": "Let $G_{\\mathbb{R}}$ be a simple real linear Lie group with maximal compact subgroup $K_{\\mathbb{R}}$ and assume that ${\\rm rank}(G_\\mathbb{R})={\\rm rank}(K_\\mathbb{R})$. In \\cite{MPVZ} we proved that for any representation $X$ of Gelfand-Kirillov dimension $\\frac{1}{2}\\dim(G_{\\mathbb{R}}/K_{\\mathbb{R}})$, the polynomial on the dual of a compact Cartan subalgebra given by the dimension of the Dirac index of members of the coherent family containing $X$ is a linear combination, with integer coefficients, of the multiplicities of the irreducible components occurring in the associated cycle. In this paper we compute these coefficients explicitly.", "revisions": [ { "version": "v1", "updated": "2017-12-12T08:36:14.000Z" } ], "analyses": { "subjects": [ "22E47" ], "keywords": [ "harish-chandra modules", "associatied cycles", "simple real linear lie group", "maximal compact subgroup", "compact cartan subalgebra" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }