{ "id": "1712.03881", "version": "v1", "published": "2017-12-11T16:45:41.000Z", "updated": "2017-12-11T16:45:41.000Z", "title": "Edge statistics of Dyson Brownian motion", "authors": [ "Benjamin Landon", "Horng-Tzer Yau" ], "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We consider the edge statistics of Dyson Brownian motion with deterministic initial data. Our main result states that if the initial data has a spectral edge with rough square root behavior down to a scale $\\eta_* \\geq N^{-2/3}$ and no outliers, then after times $t \\gg \\sqrt{ \\eta_*}$, the statistics at the spectral edge agree with the GOE/GUE. In particular we obtain the optimal time to equilibrium at the edge $t = N^{\\varepsilon} / N^{1/3}$ for sufficiently regular initial data. Our methods rely on eigenvalue rigidity results similar to those appearing in [Lee-Schnelli], the coupling idea of [Bourgade-Erd\\H{o}s-Yau-Yin] and the energy estimate of [Bourgade-Erd\\H{o}s-Yau].", "revisions": [ { "version": "v1", "updated": "2017-12-11T16:45:41.000Z" } ], "analyses": { "keywords": [ "dyson brownian motion", "edge statistics", "eigenvalue rigidity results similar", "rough square root behavior", "main result states" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }