{ "id": "1712.03698", "version": "v1", "published": "2017-12-11T09:53:37.000Z", "updated": "2017-12-11T09:53:37.000Z", "title": "Limit laws for random matrix products", "authors": [ "Jordan Emme", "Pascal Hubert" ], "categories": [ "math.DS", "math.PR" ], "abstract": "In this short note, we study the behaviour of a product of matrices with a simultaneous renormalization. Namely, for any sequence $(A\\_n)\\_{n\\in \\mathbb{N}}$ of $d\\times d$ complex matrices whose mean $A$ exists and whose norms' means are bounded, the product $\\left(I\\_d + \\frac1n A\\_0 \\right) \\dots \\left(I\\_d + \\frac1n A\\_{n-1} \\right) $ converges towards $\\exp{A}$. We give a dynamical version of this result as well as an illustration with an example of \"random walk\" on horocycles of the hyperbolic disc.", "revisions": [ { "version": "v1", "updated": "2017-12-11T09:53:37.000Z" } ], "analyses": { "keywords": [ "random matrix products", "limit laws", "hyperbolic disc", "complex matrices", "random walk" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }