{ "id": "1712.03265", "version": "v1", "published": "2017-12-08T19:37:34.000Z", "updated": "2017-12-08T19:37:34.000Z", "title": "Heat kernel estimates for Dirichlet fractional Laplacian with gradient perturbation", "authors": [ "Peng Chen", "Renming Song", "Longjie Xie", "Yingchao Xie" ], "categories": [ "math.PR", "math.AP" ], "abstract": "We give a direct proof of the sharp two-sided estimates, recently established in [4,9], for the Dirichlet heat kernel of the fractional Laplacian with gradient perturbation in $C^{1, 1}$ open sets by using Duhamel formula. We also obtain a gradient estimate for the Dirichlet heat kernel. Our assumption on the open set is slightly weaker in that we only require $D$ to be $C^{1,\\theta}$ for some $\\theta\\in (\\alpha/2, 1]$.", "revisions": [ { "version": "v1", "updated": "2017-12-08T19:37:34.000Z" } ], "analyses": { "keywords": [ "dirichlet fractional laplacian", "heat kernel estimates", "gradient perturbation", "dirichlet heat kernel", "open set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }