{ "id": "1712.03157", "version": "v1", "published": "2017-12-08T16:25:15.000Z", "updated": "2017-12-08T16:25:15.000Z", "title": "On solutions for stochastic differential equations with Hölder coefficients", "authors": [ "Rongrong Tian", "Liang Ding", "Jinlong Wei" ], "categories": [ "math.AP" ], "abstract": "Consider the following stochastic differential equation (SDE for short) $$X_t=x+\\int\\limits_0^tb(s,X_s)ds+\\int\\limits_0^t\\sigma(s,X_s)dW_s,\\quad t>0, \\, x\\in\\mathbb{R}^d,$$ where $\\{W_s\\}_{s\\geq 0}$ is a $d$-dimensional standard Wiener process, $b\\in L^q_{loc}(\\mathbb{R}_+;\\mathcal{C}_b^\\alpha(\\mathbb{R}^d))$, $\\sigma\\in \\mathcal{C}(\\mathbb{R}_+;\\mathcal{C}_b^\\alpha(\\mathbb{R}^d))$ with $\\alpha\\in (0,1), q\\in [1,2]$. Suppose that $1+\\alpha-2/q>0$, and $\\sigma\\sigma^\\top$ meets uniformly elliptic condition, then there exits a weak solution to the above equation. Furthermore, if $q=2$, the weak solution is unique, the Markov semi-group has the strong Feller property and there is a density associated with the above SDE. Moreover, if $|\\nabla\\sigma|\\in L^2_{loc}(\\mathbb{R}_+;L^\\infty(\\mathbb{R}^d))$ in addition, the path-wise uniqueness holds and the unique solution $X$ lies in $L^p(\\Omega;\\mathcal{C}([0,T];\\mathcal{C}_{b}^\\beta(B_R)))$ for every $p\\geq 1$, every $R>0$, every $T>0$ and every $\\beta\\in (0,1)$.", "revisions": [ { "version": "v1", "updated": "2017-12-08T16:25:15.000Z" } ], "analyses": { "subjects": [ "60H10", "34F05" ], "keywords": [ "stochastic differential equation", "hölder coefficients", "dimensional standard wiener process", "weak solution", "meets uniformly elliptic condition" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }