{ "id": "1712.03065", "version": "v1", "published": "2017-12-08T13:57:27.000Z", "updated": "2017-12-08T13:57:27.000Z", "title": "A sharp multiplier theorem for a perturbation-invariant class of Grushin operators of arbitrary step", "authors": [ "Gian Maria Dall'Ara", "Alessio Martini" ], "comment": "38 pages", "categories": [ "math.AP", "math.CA", "math.FA" ], "abstract": "We prove a multiplier theorem of Mihlin--H\\\"ormander type for operators of the form $-\\Delta_x - V(x) \\Delta_y$ on $\\mathbb{R}^{d_1}_x \\times \\mathbb{R}^{d_2}_y$, where $V(x) = \\sum_{j=1}^{d_1} V_j(x_j)$, the $V_j$ are perturbations of the power law $t \\mapsto |t|^{2\\sigma}$, and $\\sigma \\in (1/2,\\infty)$. The result is sharp whenever $d_1 \\geq (1+\\sigma) d_2$. The proof hinges on precise estimates for eigenvalues and eigenfunctions of one-dimensional Schr\\\"odinger operators, which are stable under perturbations of the potential.", "revisions": [ { "version": "v1", "updated": "2017-12-08T13:57:27.000Z" } ], "analyses": { "subjects": [ "34L20", "35J70", "35H20", "42B15" ], "keywords": [ "sharp multiplier theorem", "grushin operators", "perturbation-invariant class", "arbitrary step", "perturbations" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable" } } }