{ "id": "1712.03050", "version": "v1", "published": "2017-12-08T13:20:55.000Z", "updated": "2017-12-08T13:20:55.000Z", "title": "Mean dimension of full shifts", "authors": [ "Masaki Tsukamoto" ], "comment": "9 pages", "categories": [ "math.DS", "math.GN" ], "abstract": "Let $K$ be a finite dimensional compact metric space and $K^\\mathbb{Z}$ the full shift on the alphabet $K$. We prove that its mean dimension is given by $\\dim K$ or $\\dim K-1$ depending on the \"type\" of $K$. We propose a problem which seems interesting from the view point of infinite dimensional topology.", "revisions": [ { "version": "v1", "updated": "2017-12-08T13:20:55.000Z" } ], "analyses": { "subjects": [ "37B99", "54F45" ], "keywords": [ "full shift", "mean dimension", "finite dimensional compact metric space", "infinite dimensional topology", "view point" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }