{ "id": "1712.02568", "version": "v1", "published": "2017-12-07T11:26:32.000Z", "updated": "2017-12-07T11:26:32.000Z", "title": "Automorphism Groups of Countable Stable Structures", "authors": [ "Gianluca Paolini", "Saharon Shelah" ], "categories": [ "math.LO" ], "abstract": "For every countable structure $M$ we construct an $\\aleph_0$-stable countable structure $N$ such that $Aut(M)$ and $Aut(N)$ are topologically isomorphic. This shows that it is impossible to detect any form of stability of a countable structure $M$ from the topological properties of the Polish group $Aut(M)$.", "revisions": [ { "version": "v1", "updated": "2017-12-07T11:26:32.000Z" } ], "analyses": { "subjects": [ "03C45", "03E15", "22F50" ], "keywords": [ "countable stable structures", "automorphism groups", "topologically isomorphic", "topological properties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }