{ "id": "1712.02472", "version": "v1", "published": "2017-12-07T02:08:58.000Z", "updated": "2017-12-07T02:08:58.000Z", "title": "Precise asymptotics for Fisher-KPP fronts", "authors": [ "Cole Graham" ], "comment": "38 pages", "categories": [ "math.AP" ], "abstract": "We consider the one-dimensional Fisher-KPP equation with step-like initial data. Nolen, Roquejoffre, and Ryzhik showed that the solution $u$ converges at long time to a traveling wave $\\phi$ at a position $\\tilde \\sigma(t) = 2t - (3/2)\\log t + \\alpha_0- 3\\sqrt{\\pi}/\\sqrt{t}$, with error $O(t^{\\gamma-1})$ for any $\\gamma>0$. With their methods, we find a refined shift $\\sigma(t) = \\tilde \\sigma(t) + \\mu_* (\\log t)/t + \\alpha_1/t$ such that in the frame moving with $\\sigma$, the solution $u$ satisfies $u(t,x) = \\phi (x) + \\psi(x)/t + O(t^{\\gamma-3/2})$ for a certain profile $\\psi$ independent of initial data. The coefficient $\\alpha_1$ depends on initial data, but $\\mu_* = 9(5-6\\log 2)/8$ is universal, and agrees with a finding of Berestycki, Brunet, and Derrida in a closely-related problem. Furthermore, we predict the asymptotic forms of $\\sigma$ and $u$ to arbitrarily high order.", "revisions": [ { "version": "v1", "updated": "2017-12-07T02:08:58.000Z" } ], "analyses": { "subjects": [ "35B40", "35C07", "35K57" ], "keywords": [ "fisher-kpp fronts", "precise asymptotics", "one-dimensional fisher-kpp equation", "long time", "step-like initial data" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable" } } }