{ "id": "1712.02242", "version": "v1", "published": "2017-12-06T15:48:08.000Z", "updated": "2017-12-06T15:48:08.000Z", "title": "Rank-one theorem and subgraphs of BV functions in Carnot groups", "authors": [ "Sebastiano Don", "Annalisa Massaccesi", "Davide Vittone" ], "categories": [ "math.AP", "math.FA", "math.MG" ], "abstract": "We prove a rank-one theorem \\`a la G. Alberti for the derivatives of vector-valued maps with bounded variation in a class of Carnot groups that includes Heisenberg groups $\\mathbb H^n$ for $n\\geq 2$. The main tools are properties relating the horizontal derivatives of a real-valued function with bounded variation and its subgraph.", "revisions": [ { "version": "v1", "updated": "2017-12-06T15:48:08.000Z" } ], "analyses": { "subjects": [ "49Q15", "28A75", "49Q20" ], "keywords": [ "carnot groups", "rank-one theorem", "bv functions", "bounded variation", "horizontal derivatives" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }