{ "id": "1712.01929", "version": "v1", "published": "2017-12-05T21:19:34.000Z", "updated": "2017-12-05T21:19:34.000Z", "title": "Combinatorial interpretations of the Kreweras triangle in terms of subset tuples", "authors": [ "Ange Bigeni" ], "comment": "11 pages, 7 figures", "categories": [ "math.CO" ], "abstract": "We show how the combinatorial interpretation of the normalized median Genocchi numbers in terms of multiset tuples, defined by Hetyei in his study of the alternation acyclic tournaments, is bijectively equivalent to previous models like the normalized Dumont permutations or the Dellac configurations, and we extend the interpretation to the Kreweras triangle.", "revisions": [ { "version": "v1", "updated": "2017-12-05T21:19:34.000Z" } ], "analyses": { "keywords": [ "kreweras triangle", "combinatorial interpretation", "subset tuples", "normalized median genocchi numbers", "alternation acyclic tournaments" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }