{ "id": "1712.01601", "version": "v1", "published": "2017-12-05T12:31:44.000Z", "updated": "2017-12-05T12:31:44.000Z", "title": "Rooted tree maps and the derivation relation for multiple zeta values", "authors": [ "Henrik Bachmann", "Tatsushi Tanaka" ], "comment": "6 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Rooted tree maps assign to an element of the Connes-Kreimer Hopf algebra of rooted trees a linear map on the noncommutative polynomial algebra in two letters. Evaluated at any admissible word these maps induce linear relations between multiple zeta values. In this note we show that the derivation relations for multiple zeta values are contained in this class of linear relations.", "revisions": [ { "version": "v1", "updated": "2017-12-05T12:31:44.000Z" } ], "analyses": { "subjects": [ "05C05", "05C25", "11M32", "16T05" ], "keywords": [ "multiple zeta values", "derivation relation", "maps induce linear relations", "connes-kreimer hopf algebra", "rooted tree maps assign" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }