{ "id": "1712.01587", "version": "v1", "published": "2017-12-05T11:54:33.000Z", "updated": "2017-12-05T11:54:33.000Z", "title": "$G$-birational rigidity of the projective plane", "authors": [ "Dmitrijs Sakovics" ], "comment": "13 pages", "categories": [ "math.AG" ], "abstract": "Given a surface $S$ and a finite group $G$ of automorphisms of $S$, consider the birational maps $S\\dashrightarrow S'$ that commute with the action of $G$. This leads to the notion of a $G$-minimal variety. A natural question arises: for a fixed group $G$, is there a birational $G$-map between two different $G$-minimal surfaces? If no such map exists, the surface is said to be $G$-birationally rigid. This paper determines the $G$-rigidity of the projective plane for every finite subgroup $G\\subset\\mbox{PGL}_3\\left(\\mathbb{C}\\right)$.", "revisions": [ { "version": "v1", "updated": "2017-12-05T11:54:33.000Z" } ], "analyses": { "subjects": [ "14E07", "14J45", "20C25" ], "keywords": [ "projective plane", "birational rigidity", "natural question arises", "birational maps", "finite subgroup" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }