{ "id": "1712.00737", "version": "v1", "published": "2017-12-03T09:42:21.000Z", "updated": "2017-12-03T09:42:21.000Z", "title": "Explicit formulae for averages of Goldbach representations", "authors": [ "J. BrĂ¼dern", "J. Kaczorowski", "A. Perelli" ], "comment": "16 pages", "categories": [ "math.NT" ], "abstract": "We prove an explicit formula, analogous to the classical explicit formula for $\\psi(x)$, for the Ces\\`aro-Riesz mean of any order $k>0$ of the number of representations of $n$ as a sum of two primes. Our approach is based on a double Mellin transform and the analytic continuation of certain functions arising therein.", "revisions": [ { "version": "v1", "updated": "2017-12-03T09:42:21.000Z" } ], "analyses": { "subjects": [ "11P32", "11N05" ], "keywords": [ "goldbach representations", "classical explicit formula", "double mellin transform", "analytic continuation" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }