{ "id": "1712.00280", "version": "v1", "published": "2017-12-01T11:33:17.000Z", "updated": "2017-12-01T11:33:17.000Z", "title": "Monomial basis in Korenblum type spaces of analytic functions", "authors": [ "José Bonet", "Wolfgang Lusky", "Jari Taskinen" ], "categories": [ "math.FA" ], "abstract": "It is shown that the monomials $\\Lambda=(z^n)_{n=0}^{\\infty}$ are a Schauder basis of the Fr\\'echet spaces $A_+^{-\\gamma}, \\ \\gamma \\geq 0,$ that consists of all the analytic functions $f$ on the unit disc such that $(1-|z|)^{\\mu}|f(z)|$ is bounded for all $\\mu > \\gamma$. Lusky \\cite{L} proved that $\\Lambda$ is not a Schauder basis for the closure of the polynomials in weighted Banach spaces of analytic functions of type $H^{\\infty}$. A sequence space representation of the Fr\\'echet space $A_+^{-\\gamma}$ is presented. The case of (LB)-spaces $A_{-}^{-\\gamma}, \\ \\gamma > 0,$ that are defined as unions of weighted Banach spaces is also studied.", "revisions": [ { "version": "v1", "updated": "2017-12-01T11:33:17.000Z" } ], "analyses": { "subjects": [ "46E10", "46A35", "46A45", "46E15" ], "keywords": [ "analytic functions", "korenblum type spaces", "monomial basis", "weighted banach spaces", "frechet space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }