{ "id": "1712.00273", "version": "v1", "published": "2017-12-01T11:09:13.000Z", "updated": "2017-12-01T11:09:13.000Z", "title": "Singular values and non-repelling cycles for entire transcendental maps", "authors": [ "Anna Miriam Benini", "NĂºria Fagella" ], "comment": "13 pages, 1 figure", "categories": [ "math.DS" ], "abstract": "Let $f$ be a map with bounded set of singular values for which periodic dynamic rays exist and land. We prove that each non-repelling cycle is associated to a singular orbit which cannot accumulate on any other non-repelling cycle. When $f$ has finitely many singular values this implies a refinement of the Fatou-Shishikura inequality. Our approach is combinatorial in the spirit of the approach used by [Ki00], [BCL+16] for polynomials.", "revisions": [ { "version": "v1", "updated": "2017-12-01T11:09:13.000Z" } ], "analyses": { "subjects": [ "30D05", "37F10", "30D30" ], "keywords": [ "entire transcendental maps", "singular values", "non-repelling cycle", "periodic dynamic rays", "singular orbit" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }