{ "id": "1712.00210", "version": "v1", "published": "2017-12-01T06:59:11.000Z", "updated": "2017-12-01T06:59:11.000Z", "title": "An upper bound on the size of avoidance couplings on $K_n$", "authors": [ "Erik Bates", "Lisa Sauermann" ], "comment": "7 pages", "categories": [ "math.PR" ], "abstract": "We show that a coupling of non-colliding simple random walkers on the complete graph on $n$ vertices can include at most $n - \\log n$ walkers. This improves the only previously known upper bound of $n-2$ due to Angel, Holroyd, Martin, Wilson, and Winkler (Electron. Commun. Probab. 18, 2013).", "revisions": [ { "version": "v1", "updated": "2017-12-01T06:59:11.000Z" } ], "analyses": { "subjects": [ "60J10", "05C81" ], "keywords": [ "upper bound", "avoidance couplings", "non-colliding simple random walkers", "complete graph" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }