{ "id": "1711.11568", "version": "v1", "published": "2017-11-30T18:39:38.000Z", "updated": "2017-11-30T18:39:38.000Z", "title": "A locally hyperbolic 3-manifold that is not hyperbolic", "authors": [ "Tommaso Cremaschi" ], "comment": "11 pages, 5 figures", "categories": [ "math.GT" ], "abstract": "We construct a locally hyperbolic 3-manifold $M_\\infty$ such that $\\pi_ 1(M_\\infty)$ has no divisible subgroup. We then show that $M_\\infty$ is not homeomorphic to any complete hyperbolic manifold. This answers a question of Agol [DHM06,Mar07].", "revisions": [ { "version": "v1", "updated": "2017-11-30T18:39:38.000Z" } ], "analyses": { "keywords": [ "locally hyperbolic", "complete hyperbolic manifold", "homeomorphic", "divisible subgroup" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }