{ "id": "1711.10655", "version": "v1", "published": "2017-11-29T03:00:06.000Z", "updated": "2017-11-29T03:00:06.000Z", "title": "Semi-classical Solutions For Fractional Schrodinger Equations With Potential Vanishing At Infinity", "authors": [ "Xiaoming An", "Shuangjie Peng", "Chaodong Xie" ], "categories": [ "math.AP" ], "abstract": "We study the following fractional Schr\\\"{o}dinger equation \\begin{equation}\\label{eq0.1} \\varepsilon^{2s}(-\\Delta)^s u + Vu = |u|^{p - 2}u,\\ \\ x\\in\\,\\,\\mathbb{R}^N. \\end{equation} We show that if the external potential $V\\in C(\\mathbb{R}^N;[0,\\infty))$ has a local minimum and $p\\in (2 + 2s/(N - 2s), 2^*_s)$, where $2^*_s=2N/(N-2s),\\,N\\ge 2s$, the problem has a family of solutions concentrating at the local minimum of $V$ provided that $\\liminf_{|x|\\to \\infty}V(x)|x|^{2s} > 0$. The proof is based on variational methods and penalized technique. {\\textbf {Key words}: } fractional Schr\\\"{o}dinger; vanishing potential; penalized technique; variational methods.", "revisions": [ { "version": "v1", "updated": "2017-11-29T03:00:06.000Z" } ], "analyses": { "keywords": [ "fractional schrodinger equations", "semi-classical solutions", "potential vanishing", "local minimum", "variational methods" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }