{ "id": "1711.10578", "version": "v1", "published": "2017-11-28T21:54:39.000Z", "updated": "2017-11-28T21:54:39.000Z", "title": "Martingale transform and Square function: some end-point weak weighted estimates", "authors": [ "Paata Ivanisvili", "Alexander Volberg" ], "categories": [ "math.AP", "math.CA", "math.PR" ], "abstract": "Following the ideas of [8] we prove that there is a sequence of weights $w\\in A^d_1$ such that $[w]^d_{A_1}\\to \\infty$, and martingale transforms $T$ such that $\\|T: L^1(w) \\to L^{1, \\infty}(w)\\| \\ge c [w]^d_{A_1}\\log [w]^d_{A_1}$ with an absolute positive $c$. We also show the existence of the sequence of weights such that $\\|S\\|_{w} \\ge c \\|M^d\\|_{w}\\sqrt{\\log \\|M^d\\|_{w}}$. Finally we show that for any weight $w\\in A^d_2$ and any characteristic function of a dyadic interval $\\|S_w\\chi_I\\|_{L^{2, \\infty}(w^{-1})} \\le C \\sqrt{[w]_{A^d_2}}\\, \\|\\chi_I\\|_w$. So on characteristic functions at least, no logarithmic correction is needed.", "revisions": [ { "version": "v1", "updated": "2017-11-28T21:54:39.000Z" } ], "analyses": { "subjects": [ "42B20", "42B35", "47A30" ], "keywords": [ "end-point weak weighted estimates", "martingale transform", "square function", "characteristic function", "dyadic interval" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }