{ "id": "1711.10202", "version": "v1", "published": "2017-11-28T09:39:03.000Z", "updated": "2017-11-28T09:39:03.000Z", "title": "Empirical processes for recurrent and transient random walks in random scenery", "authors": [ "Nadine Guillotin-Plantard", "Francoise Pene", "Martin Wendler" ], "categories": [ "math.PR" ], "abstract": "In this paper, we are interested in the asymptotic behaviour of the sequence of processes $(W_n(s,t))_{s,t\\in[0,1]}$ with \\begin{equation*} W_n(s,t):=\\sum_{k=1}^{\\lfloor nt\\rfloor}\\big(1_{\\{\\xi_{S_k}\\leq s\\}}-s\\big) \\end{equation*} where $(\\xi_x, x\\in\\mathbb{Z}^d)$ is a sequence of independent random variables uniformly distributed on $[0,1]$ and $(S_n)_{n\\in\\mathbb N}$ is a random walk evolving in $\\mathbb{Z}^d$, independent of the $\\xi$'s. In Wendler (2016), the case where $(S_n)_{n\\in\\mathbb N}$ is a recurrent random walk in $\\mathbb{Z}$ such that $(n^{-\\frac 1\\alpha}S_n)_{n\\geq 1}$ converges in distribution to a stable distribution of index $\\alpha$, with $\\alpha\\in(1,2]$, has been investigated. Here, we consider the cases where $(S_n)_{n\\in\\mathbb N}$ is either: a) a transient random walk in $\\mathbb{Z}^d$, b) a recurrent random walk in $\\mathbb{Z}^d$ such that $(n^{-\\frac 1d}S_n)_{n\\geq 1}$ converges in distribution to a stable distribution of index $d\\in\\{1,2\\}$.", "revisions": [ { "version": "v1", "updated": "2017-11-28T09:39:03.000Z" } ], "analyses": { "subjects": [ "60G50", "60F17", "62G30" ], "keywords": [ "transient random walk", "random scenery", "empirical processes", "recurrent random walk", "independent random variables" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }