{ "id": "1711.09835", "version": "v1", "published": "2017-11-27T17:11:21.000Z", "updated": "2017-11-27T17:11:21.000Z", "title": "Higher Hölder regularity for the fractional $p-$Laplacian in the superquadratic case", "authors": [ "Lorenzo Brasco", "Erik Lindgren", "Armin Schikorra" ], "comment": "44 pages", "categories": [ "math.AP" ], "abstract": "We prove higher H\\\"older regularity for solutions of equations involving the fractional $p-$Laplacian of order $s$, when $p\\ge 2$ and $0N/(s\\,p)$, which is almost sharp whenever $s\\,p\\leq (p-1)+N/q$. The result is new already for the homogeneous equation.", "revisions": [ { "version": "v1", "updated": "2017-11-27T17:11:21.000Z" } ], "analyses": { "subjects": [ "35B65", "35J70", "35R09" ], "keywords": [ "higher hölder regularity", "superquadratic case", "fractional", "non-homogeneous equation" ], "note": { "typesetting": "TeX", "pages": 44, "language": "en", "license": "arXiv", "status": "editable" } } }