{ "id": "1711.09770", "version": "v1", "published": "2017-11-27T15:38:18.000Z", "updated": "2017-11-27T15:38:18.000Z", "title": "Optimal stability estimate in the inverse boundary value problem for periodic potentials with partial data", "authors": [ "Sombuddha Bhattacharyya", "Cătălin I. Cârstea" ], "categories": [ "math.AP" ], "abstract": "We consider the inverse boundary value problem for operators of the form $-\\triangle+q$ in an infinite domain $\\Omega=\\mathbb{R}\\times\\omega\\subset\\mathbb{R}^{1+n}$, $n\\geq3$, with a periodic potential $q$. For Dirichlet-to-Neumann data localized on a portion of the boundary of the form $\\Gamma_1=\\mathbb{R}\\times\\gamma_1$, with $\\gamma_1$ being the complement either of a flat or spherical portion of $\\partial\\omega$, we prove that a log-type stability estimate holds.", "revisions": [ { "version": "v1", "updated": "2017-11-27T15:38:18.000Z" } ], "analyses": { "keywords": [ "inverse boundary value problem", "optimal stability estimate", "periodic potential", "partial data", "log-type stability estimate holds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }