{ "id": "1711.09589", "version": "v1", "published": "2017-11-27T09:15:39.000Z", "updated": "2017-11-27T09:15:39.000Z", "title": "On certain integrals involving the Dirichlet divisor problem", "authors": [ "Aleksandar Ivić", "Wenguang Zhai" ], "comment": "21 pages", "categories": [ "math.NT" ], "abstract": "We prove that $$ \\int_1^X\\Delta(x)\\Delta_3(x)\\,dx \\ll X^{13/9}\\log^{10/3}X, \\quad \\int_1^X\\Delta(x)\\Delta_4(x)\\,dx \\ll_\\varepsilon X^{25/16+\\varepsilon}, $$ where $\\Delta_k(x)$ is the error term in the asymptotic formula for the summatory function of $d_k(n)$, generated by $\\zeta^k(s)$ ($\\Delta_2(x) \\equiv \\Delta(x)$). These bounds are sharper than the ones which follow by the Cauchy-Schwarz inequality and mean square results for $\\Delta_k(x)$. We also obtain the analogues of the above bounds when $\\D(x)$ is replaced by $E(x)$, the error term in the mean square formula for $|\\zeta(1/2+it)|$.", "revisions": [ { "version": "v1", "updated": "2017-11-27T09:15:39.000Z" } ], "analyses": { "subjects": [ "11N36", "11M06" ], "keywords": [ "dirichlet divisor problem", "error term", "mean square formula", "mean square results", "asymptotic formula" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }