{ "id": "1711.08954", "version": "v1", "published": "2017-11-24T13:08:32.000Z", "updated": "2017-11-24T13:08:32.000Z", "title": "Kernel estimates for elliptic operators with unbounded diffusion, drift and potential terms", "authors": [ "S. E. Boutiah", "A. Rhandi", "C. Tacelli" ], "comment": "15 pages", "categories": [ "math.AP" ], "abstract": "In this paper we prove that the heat kernel $k$ associated to the operator $A:= (1+|x|^\\alpha)\\Delta +b|x|^{\\alpha-1}\\frac{x}{|x|}\\cdot\\nabla -|x|^\\beta$ satisfies $$ k(t,x,y) \\leq c_1e^{\\lambda_0 t+ c_2t^{-\\gamma}}\\left(\\frac{1+|y|^\\alpha}{1+|x|^\\alpha}\\right)^{\\frac{b}{2\\alpha}} \\frac{(|x||y|)^{-\\frac{N-1}{2}-\\frac{1}{4}(\\beta-\\alpha)}}{1+|y|^\\alpha} e^{-\\frac{\\sqrt{2}}{\\beta-\\alpha+2}\\left(|x|^{\\frac{\\beta-\\alpha+2}{2}}+ |y|^{\\frac{\\beta-\\alpha+2}{2}}\\right)} $$ for $t>0,\\,|x|,\\,|y|\\ge 1$, where $b\\in\\mathbb{R}$, $c_1,\\,c_2$ are positive constants, $\\lambda_0$ is the largest eigenvalue of the operator $A$, and $\\gamma=\\frac{\\beta-\\alpha+2}{\\beta+\\alpha-2}$, in the case where $N>2,\\,\\alpha>2$ and $\\beta>\\alpha -2$. The proof is based on the relationship between the log-Sobolev inequality and the ultracontractivity of a suitable semigroup in a weighted space.", "revisions": [ { "version": "v1", "updated": "2017-11-24T13:08:32.000Z" } ], "analyses": { "subjects": [ "35K08", "35J10", "47D08", "35K20", "47D07" ], "keywords": [ "elliptic operators", "potential terms", "kernel estimates", "unbounded diffusion", "heat kernel" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }