{ "id": "1711.08934", "version": "v1", "published": "2017-11-24T11:57:50.000Z", "updated": "2017-11-24T11:57:50.000Z", "title": "Improved bounds for restricted families of projections to planes in $\\mathbb{R}^{3}$", "authors": [ "Tuomas Orponen", "Laura Venieri" ], "comment": "11 pages", "categories": [ "math.CA", "math.MG" ], "abstract": "For $e \\in S^{2}$, the unit sphere in $\\mathbb{R}^3$, let $\\pi_{e}$ be the orthogonal projection to $e^{\\perp} \\subset \\mathbb{R}^{3}$, and let $W \\subset \\mathbb{R}^{3}$ be any $2$-plane, which is not a subspace. We prove that if $K \\subset \\mathbb{R}^{3}$ is a Borel set with $\\dim_{\\mathrm{H}} K \\leq \\tfrac{3}{2}$, then $\\dim_{\\mathrm{H}} \\pi_{e}(K) = \\dim_{\\mathrm{H}} K$ for $\\mathcal{H}^{1}$ almost every $e \\in S^{2} \\cap W$, where $\\mathcal{H}^{1}$ denotes the $1$-dimensional Hausdorff measure and $\\dim_{\\mathrm{H}}$ the Hausdorff dimension. This was known earlier, due to J\\\"arvenp\\\"a\\\"a, J\\\"arvenp\\\"a\\\"a, Ledrappier and Leikas, for Borel sets $K \\subset \\mathbb{R}^{3}$ with $\\dim_{\\mathrm{H}} K \\leq 1$. We also prove a partial result for sets with dimension exceeding $3/2$, improving earlier bounds by D. Oberlin and R. Oberlin.", "revisions": [ { "version": "v1", "updated": "2017-11-24T11:57:50.000Z" } ], "analyses": { "subjects": [ "28A80", "28A78" ], "keywords": [ "restricted families", "borel set", "dimensional hausdorff measure", "unit sphere", "improving earlier bounds" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }