{ "id": "1711.08928", "version": "v1", "published": "2017-11-24T11:20:11.000Z", "updated": "2017-11-24T11:20:11.000Z", "title": "The $a$-values of the Riemann zeta function near the critical line", "authors": [ "Junsoo Ha", "Yoonbok Lee" ], "categories": [ "math.NT" ], "abstract": "We study the value distribution of the Riemann zeta function near the line $\\Re s = 1/2$. We find an asymptotic formula for the number of $a$-values in the rectangle $ 1/2 + h_1 / (\\log T)^\\theta \\leq \\Re s \\leq 1/2+ h_2 /(\\log T)^\\theta $, $T \\leq \\Im s \\leq 2T$ for fixed $h_1, h_2>0$ and $ 0 < \\theta <1/13$. To prove it, we need an extension of the valid range of Lamzouri, Lester and Radziwi\\l\\l's recent results on the discrepancy between the distribution of $\\zeta(s)$ and its random model. We also propose the secondary main term for the Selberg's central limit theorem by providing sharper estimates on the line $\\Re s = 1/2 + 1/(\\log T)^\\theta $.", "revisions": [ { "version": "v1", "updated": "2017-11-24T11:20:11.000Z" } ], "analyses": { "keywords": [ "riemann zeta function", "critical line", "selbergs central limit theorem", "secondary main term", "sharper estimates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }