{ "id": "1711.08691", "version": "v1", "published": "2017-11-23T13:49:15.000Z", "updated": "2017-11-23T13:49:15.000Z", "title": "Phonon Sidebands in Transition Metal Dichalcogenides", "authors": [ "Dominik Christiansen", "Malte Selig", "Gunnar Berghäuser", "Robert Schmidt", "Iris Niehues", "Robert Schneider", "Ashish Arora", "Steffen Michaelis de Vasconcellos", "Rudolf Bratschitsch", "Ermin Malic", "Andreas Knorr" ], "journal": "D. Christiansen et. al., Phys. Rev. Lett. 119, 187402 (2017)", "doi": "10.1103/PhysRevLett.119.187402", "categories": [ "cond-mat.mes-hall" ], "abstract": "Excitons dominate the optical properties of monolayer transition metal dichalcogenides (TMDs). Besides optically accessible bright exciton states, TMDs exhibit also a multitude of optically forbidden dark excitons. Here, we show that efficient exciton-phonon scattering couples bright and dark states and gives rise to an asymmetric excitonic line shape. The observed asymmetry can be traced back to phonon-induced sidebands that are accompanied by a polaron redshift. We present a joint theory-experiment study investigating the microscopic origin of these sidebands in different TMD materials taking into account intra- and intervalley scattering channels opened by optical and acoustic phonons. The gained insights contribute to a better understanding of the optical fingerprint of these technologically promising nanomaterials.", "revisions": [ { "version": "v1", "updated": "2017-11-23T13:49:15.000Z" } ], "analyses": { "keywords": [ "phonon sidebands", "accessible bright exciton states", "efficient exciton-phonon scattering couples bright", "monolayer transition metal dichalcogenides", "asymmetric excitonic line shape" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Phys. Rev. Lett." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }