{ "id": "1711.08650", "version": "v1", "published": "2017-11-23T11:09:11.000Z", "updated": "2017-11-23T11:09:11.000Z", "title": "Reidemeister spectra for solvmanifolds in low dimensions", "authors": [ "Karel Dekimpe", "Sam Tertooy", "Iris Van den Bussche" ], "comment": "21 pages", "categories": [ "math.GR", "math.AT" ], "abstract": "The Reidemeister number of an endomorphism of a group is the number of twisted conjugacy classes determined by that endomorphism. The collection of all Reidemeister numbers of all automorphisms of a group $G$ is called the Reidemeister spectrum of $G$. In this paper, we determine the Reidemeister spectra of all fundamental groups of solvmanifolds up to Hirsch length 4.", "revisions": [ { "version": "v1", "updated": "2017-11-23T11:09:11.000Z" } ], "analyses": { "subjects": [ "20F16", "20F34" ], "keywords": [ "reidemeister spectrum", "low dimensions", "solvmanifolds", "reidemeister number", "twisted conjugacy classes" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }