{ "id": "1711.07928", "version": "v1", "published": "2017-11-21T17:24:47.000Z", "updated": "2017-11-21T17:24:47.000Z", "title": "Maslov, Chern-Weil and Mean Curvature", "authors": [ "Tommaso Pacini" ], "comment": "10 pages, comments welcome", "categories": [ "math.DG", "math.SG" ], "abstract": "We provide an integral formula for the Maslov index of a pair $(E,F)$ over a surface $\\Sigma$, where $E\\rightarrow\\Sigma$ is a complex vector bundle and $F\\subset E_{|\\partial\\Sigma}$ is a totally real subbundle. As in Chern-Weil theory, this formula is written in terms of the curvature of $E$ plus a boundary contribution. When $(E,F)$ is obtained via an immersion of $(\\Sigma,\\partial\\Sigma)$ into a pair $(M,L)$ where $M$ is K\\\"ahler and $L$ is totally real, the boundary contribution is related to the mean curvature of $L$. In this context the formula thus allows us to control the Maslov index in terms of the geometry of $(M,L)$.", "revisions": [ { "version": "v1", "updated": "2017-11-21T17:24:47.000Z" } ], "analyses": { "keywords": [ "mean curvature", "maslov index", "boundary contribution", "complex vector bundle", "integral formula" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }