{ "id": "1711.07780", "version": "v1", "published": "2017-11-21T13:41:47.000Z", "updated": "2017-11-21T13:41:47.000Z", "title": "A $(p,ν)$-extension of the Appell function $F_1(\\cdot)$ and its properties", "authors": [ "S A Dar", "R B Paris" ], "comment": "11 pages, 0 figures", "categories": [ "math.CA" ], "abstract": "In this paper, we obtain a $(p,v)$-extension of the Appell hypergeometric function $ F_{1}(\\cdot)$, together with its integral representation, by using the extended Beta function $B_{p,v}(x,y)$ introduced in arXiv:1502.06200. Also, we give some of its main properties, namely the Mellin transform, a differential formula, recursion formulas and a bounded inequality. In addition, some new integral representations of the extended Appell function$ F_{1,p,v}(\\cdot)$ involving Meijer's $G$-function are obtained.", "revisions": [ { "version": "v1", "updated": "2017-11-21T13:41:47.000Z" } ], "analyses": { "subjects": [ "33C60", "33C65", "33B15", "33C45", "33C10" ], "keywords": [ "integral representation", "appell hypergeometric function", "recursion formulas", "extended appell function", "extended beta function" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }