{ "id": "1711.07583", "version": "v1", "published": "2017-11-21T00:14:40.000Z", "updated": "2017-11-21T00:14:40.000Z", "title": "Adiabatic evolution and shape resonances", "authors": [ "Michael Hitrik", "Andrea Mantile", "Johannes Sjoestrand" ], "categories": [ "math-ph", "math.AP", "math.MP" ], "abstract": "Motivated by a problem of one mode approximation for a non-linear evolution with charge accumulation in potential wells, we consider a general linear adiabatic evolution problem for a semi-classical Schr\\\"odinger operator with a time dependent potential with a well in an island. In particular, we show that we can choose the adiabatic parameter $\\varepsilon $ with $\\ln\\varepsilon \\asymp -1/h$, where $h$ denotes the semi-classical parameter, and get adiabatic approximations of exact solutions over a time interval of length $\\varepsilon ^{-N}$ with an error ${\\cal O}(\\varepsilon ^N)$. Here $N>0$ is arbitrary.", "revisions": [ { "version": "v1", "updated": "2017-11-21T00:14:40.000Z" } ], "analyses": { "subjects": [ "35J10", "35P20", "35B34", "35S05" ], "keywords": [ "shape resonances", "general linear adiabatic evolution problem", "time dependent potential", "potential wells", "non-linear evolution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }