{ "id": "1711.07169", "version": "v1", "published": "2017-11-20T06:36:54.000Z", "updated": "2017-11-20T06:36:54.000Z", "title": "A characterization of finite vector bundles on Gauduchon astheno-Kahler manifolds", "authors": [ "Indranil Biswas", "Vamsi Pritham Pingali" ], "comment": "10 pages. Comments are most welcome", "categories": [ "math.AG", "math.DG" ], "abstract": "A vector bundle on a projective variety X is called finite if it satisfies a nontrivial polynomial equation with integral coefficients. Nori proved that a vector bundle E on X is finite if and only if the pullback of E to some finite etale Galois covering of X is trivial. We prove the same statement when X is a compact complex manifold admitting a Gauduchon astheno-Kahler metric.", "revisions": [ { "version": "v1", "updated": "2017-11-20T06:36:54.000Z" } ], "analyses": { "keywords": [ "finite vector bundles", "gauduchon astheno-kahler manifolds", "characterization", "nontrivial polynomial equation", "gauduchon astheno-kahler metric" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }