{ "id": "1711.07103", "version": "v1", "published": "2017-11-19T23:26:57.000Z", "updated": "2017-11-19T23:26:57.000Z", "title": "Eigenvectors distribution and quantum unique ergodicity for deformed Wigner matrices", "authors": [ "Lucas Benigni" ], "comment": "34 pages", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We analyze the distribution of eigenvectors for mesoscopic, mean-field perturbations of diagonal matrices in the bulk of the spectrum. Our results apply to a generalized $N\\times N$ Rosenzweig-Porter model. We prove that the eigenvectors entries are asymptotically Gaussian with a specific variance, localizing them onto a small, explicit, part of the spectrum. For a well spread initial spectrum, this variance profile universally follows a heavy-tailed Cauchy distribution. The proof relies on a priori local laws for this model as given in [28, 27, 11] and the eigenvector moment flow from [12].", "revisions": [ { "version": "v1", "updated": "2017-11-19T23:26:57.000Z" } ], "analyses": { "subjects": [ "60B20", "15B52", "58J51" ], "keywords": [ "quantum unique ergodicity", "deformed wigner matrices", "eigenvectors distribution", "spread initial spectrum", "priori local laws" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }