{ "id": "1711.05358", "version": "v1", "published": "2017-11-14T23:43:05.000Z", "updated": "2017-11-14T23:43:05.000Z", "title": "Linear and quadratic uniformity of the Möbius function over $\\mathbb{F}_q[t]$", "authors": [ "Pierre-Yves Bienvenu", "Thái Hoàng Lê" ], "comment": "23 pages, 1 figure", "categories": [ "math.NT", "math.CO" ], "abstract": "We examine correlations of the M\\\"obius function over $\\mathbb{F}_q[t]$ with linear or quadratic phases, that is, averages of the form \\begin{equation} \\label{eq:average} \\frac{1}{q^n}\\sum_{\\text{deg }f0$ if $Q$ is linear and $O_A \\left( n^{-A} \\right)$ for any $A>0$ if $Q$ is quadratic. The latter result is unconditional if $Q(f)$ is a linear form in the coefficients of $f^2$, that is, a Hankel quadratic form, whereas for general quadratic forms, it is conditional on a new conjecture of an additive-combinatorial nature.", "revisions": [ { "version": "v1", "updated": "2017-11-14T23:43:05.000Z" } ], "analyses": { "subjects": [ "11B30", "11T55" ], "keywords": [ "quadratic uniformity", "möbius function", "hankel quadratic form", "general quadratic forms", "additive-combinatorial nature" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }