{ "id": "1711.05080", "version": "v2", "published": "2017-11-14T12:31:48.000Z", "updated": "2017-12-09T09:29:59.000Z", "title": "Homology of the Lie algebra $\\mathfrak{gl}(\\infty,R)$", "authors": [ "A. Fialowski", "K. Iohara" ], "comment": "14 pages, minor corrections, Section 6.6 added", "categories": [ "math.RT", "math-ph", "math.KT", "math.MP" ], "abstract": "In this note we compute the homology of the Lie algebra $\\mathfrak{gl}(\\infty,R)$ where $R$ is an associative unital $k$-algebra which is used in higher dimensional soliton theory. When $k$ is a field of characteristic $0$, our result justifies an old result of Feigin and Tsygan appeared in 1983. The special case when $R=k$ is the complex number field $\\mathbb{C}$ appeared first in soliton theory.", "revisions": [ { "version": "v2", "updated": "2017-12-09T09:29:59.000Z" } ], "analyses": { "keywords": [ "lie algebra", "higher dimensional soliton theory", "complex number field", "result justifies", "old result" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }