{ "id": "1711.04353", "version": "v1", "published": "2017-11-12T20:41:12.000Z", "updated": "2017-11-12T20:41:12.000Z", "title": "Ordinal Definability and Combinatorics of Equivalence Relations", "authors": [ "William Chan" ], "categories": [ "math.LO" ], "abstract": "Assume $\\mathsf{ZF + AD^+ + V = L(\\mathscr{P}(\\mathbb{R}))}$. Let $E$ be a $\\mathbf{\\Sigma}^1_1$ equivalence relation coded in $\\mathrm{HOD}$. $E$ has an ordinal definable equivalence class without any ordinal definable elements if and only if $\\mathrm{HOD} \\models E$ is unpinned. $\\mathsf{ZF + AD^+ + V = L(\\mathscr{P}(\\mathbb{R}))}$ proves $E$-class section uniformization when $E$ is a $\\mathbf{\\Sigma}^1_1$ equivalence relation on $\\mathbb{R}$ which is pinned in every transitive model of $\\mathsf{ZFC}$ containing the real which codes $E$: Suppose $R$ is a relation on $\\mathbb{R}$ such that each section $R_x = \\{y : (x,y) \\in R\\}$ is an $E$-class, then there is a function $f : \\mathbb{R} \\rightarrow \\mathbb{R}$ such that for all $x \\in \\mathbb{R}$, $R(x,f(x))$. $\\mathsf{ZF + AD}$ proves that $\\mathbb{R} \\times \\kappa$ is J\\'onsson whenever $\\kappa$ is an ordinal: For every function $f : [\\mathbb{R} \\times \\kappa]^{<\\omega}_= \\rightarrow \\mathbb{R} \\times \\kappa$, there is an $A \\subseteq \\mathbb{R} \\times \\kappa$ with $A$ in bijection with $\\mathbb{R} \\times \\kappa$ and $f[[A]^{<\\omega}_=] \\neq \\mathbb{R} \\times \\kappa$.", "revisions": [ { "version": "v1", "updated": "2017-11-12T20:41:12.000Z" } ], "analyses": { "keywords": [ "equivalence relation", "ordinal definability", "combinatorics", "ordinal definable equivalence class", "class section uniformization" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }