{ "id": "1711.03366", "version": "v1", "published": "2017-11-09T13:26:52.000Z", "updated": "2017-11-09T13:26:52.000Z", "title": "Oscillatory behavior of large eigenvalues in quantum Rabi models", "authors": [ "Anne Boutet de Monvel", "Lech Zielinski" ], "comment": "32 pages, no figure", "categories": [ "math-ph", "math.MP" ], "abstract": "We investigate the large $n$ asymptotics of the $n$-th eigenvalue for a class of unbounded self-adjoint operators defined by infinite Jacobi matrices with discrete spectrum. In the case of the quantum Rabi model we obtain the first three terms of the asymptotics which determine the parameters of the model. This paper is based on our previous paper [5] that it completes and improves.", "revisions": [ { "version": "v1", "updated": "2017-11-09T13:26:52.000Z" } ], "analyses": { "subjects": [ "47B36", "81T10", "81Q10", "47A75", "47A55" ], "keywords": [ "quantum rabi model", "large eigenvalues", "oscillatory behavior", "infinite jacobi matrices", "discrete spectrum" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }