{ "id": "1711.02842", "version": "v1", "published": "2017-11-08T05:53:53.000Z", "updated": "2017-11-08T05:53:53.000Z", "title": "Random matrices: Probability of Normality", "authors": [ "Andrei Deneanu", "Van Vu" ], "categories": [ "math.PR", "math.CO" ], "abstract": "In this paper, we investigate the following question: How often is a random matrix normal? We consider a random $n\\times n$ matrix, $M_n$, whose entries are i.i.d. Rademacher random variables (taking values $\\{ \\pm1 \\}$ with probability $1/2$) and prove $$2^{-\\left(0.5+o(1)\\right)n^2} \\le P\\left(M_n \\text{ is normal}\\right) \\le 2^{-(0.302+o(1))n^{2}}. $$ We conjecture that the lower bound is sharp.", "revisions": [ { "version": "v1", "updated": "2017-11-08T05:53:53.000Z" } ], "analyses": { "keywords": [ "probability", "random matrix normal", "rademacher random variables", "lower bound", "conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }