{ "id": "1711.02457", "version": "v1", "published": "2017-11-07T13:38:15.000Z", "updated": "2017-11-07T13:38:15.000Z", "title": "Deforming 3-manifolds of bounded geometry and uniformly positive scalar curvature", "authors": [ "Laurent Bessières", "Gérard Besson", "Sylvain Maillot", "Fernando Coda Marques", "Laurentbessì Eres", "Fernando Marques" ], "categories": [ "math.DG" ], "abstract": "We prove that the moduli space of complete Riemannian metrics of bounded geometry and uniformly positive scalar curvature on an orientable 3-manifold is path-connected. This generalizes the main result of the fourth author [Mar12] in the compact case. The proof uses Ricci flow with surgery as well as arguments involving performing infinite connected sums with control on the geometry.", "revisions": [ { "version": "v1", "updated": "2017-11-07T13:38:15.000Z" } ], "analyses": { "keywords": [ "uniformly positive scalar curvature", "bounded geometry", "complete riemannian metrics", "moduli space", "main result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }