{ "id": "1711.02286", "version": "v1", "published": "2017-11-07T05:04:07.000Z", "updated": "2017-11-07T05:04:07.000Z", "title": "Global Solution for the incompressible Navier-Stokes equations] { Global Solution for the incompressible Navier-Stokes equations with a class of large data in $BMO^{-1}(\\mathbb{R}^3)$", "authors": [ "Du Yi", "Zhou Yi" ], "categories": [ "math.AP" ], "abstract": "In this paper, we shall establish the global well-posedness, the space-time analyticity of the Navier-Stokes equations for a class of large periodic data $u_0 \\in BMO^{-1}(\\mathbb{R}^3)$. This improves the classical result of Koch \\& Tataru \\cite{koch-tataru}, for the global well-posedness with small initial data $u_0 \\in BMO^{-1}(\\mathbb{R}^n)$.", "revisions": [ { "version": "v1", "updated": "2017-11-07T05:04:07.000Z" } ], "analyses": { "subjects": [ "35K55" ], "keywords": [ "incompressible navier-stokes equations", "global solution", "large data", "global well-posedness", "small initial data" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }