{ "id": "1711.02250", "version": "v1", "published": "2017-11-07T01:42:13.000Z", "updated": "2017-11-07T01:42:13.000Z", "title": "Ergodicity and Lyapunov functions for Langevin dynamics with singular potentials", "authors": [ "David P. Herzog", "Jonathan C. Mattingly" ], "categories": [ "math.PR", "math-ph", "math.DS", "math.MP" ], "abstract": "We study Langevin dynamics of $N$ particles on $R^d$ interacting through a singular repulsive potential, e.g.~the well-known Lennard-Jones type, and show that the system converges to the unique invariant Gibbs measure exponentially fast in a weighted total variation distance. The proof of the main result relies on an explicit construction of a Lyapunov function. In contrast to previous results for such systems, our result implies geometric convergence to equilibrium starting from an essentially optimal family of initial distributions.", "revisions": [ { "version": "v1", "updated": "2017-11-07T01:42:13.000Z" } ], "analyses": { "subjects": [ "60H10", "82C31", "37A25", "37B25" ], "keywords": [ "lyapunov function", "langevin dynamics", "singular potentials", "unique invariant gibbs measure", "ergodicity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }