{ "id": "1711.01718", "version": "v1", "published": "2017-11-06T04:03:13.000Z", "updated": "2017-11-06T04:03:13.000Z", "title": "Category and Topological Complexity of the configuration space $F(G\\times \\mathbb{R}^n,k)$", "authors": [ "Cesar A. Ipanaque Zapata" ], "categories": [ "math.AT" ], "abstract": "The Lusternik-Schnirelmann category $cat(-)$ and Topological complexity $TC(-)$ are homotopy invariants which have interesting applications in Robotics, specifically, in the robot motion planning problem. In this paper we calculate the Lusternik-Schnirelmann category and topological complexity of the configuration space of $2$ distinct points in the product $\\mathbb{S}^1\\times\\mathbb{R}^2$.", "revisions": [ { "version": "v1", "updated": "2017-11-06T04:03:13.000Z" } ], "analyses": { "keywords": [ "topological complexity", "configuration space", "lusternik-schnirelmann category", "robot motion planning problem", "homotopy invariants" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }