{ "id": "1711.01484", "version": "v1", "published": "2017-11-04T19:53:02.000Z", "updated": "2017-11-04T19:53:02.000Z", "title": "Regularity of maximal functions on Hardy-Sobolev spaces", "authors": [ "Carlos Pérez", "Tiago Picon", "Olli Saari", "Mateus Sousa" ], "comment": "10 pages", "categories": [ "math.CA" ], "abstract": "We prove that maximal operators of convolution type associated to smooth kernels are bounded in the homogeneous Hardy-Sobolev spaces $\\dot{H}^{1,p}(\\mathbb{R}^d)$ when $1/p < 1+1/d$. This range of exponents is sharp. As a by-product of the proof, we obtain similar results for the local Hardy-Sobolev spaces $\\dot{h}^{1,p}(\\mathbb{R}^d)$ in the same range of exponents.", "revisions": [ { "version": "v1", "updated": "2017-11-04T19:53:02.000Z" } ], "analyses": { "subjects": [ "42B25", "42B30", "46E35" ], "keywords": [ "maximal functions", "regularity", "local hardy-sobolev spaces", "convolution type", "smooth kernels" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }