{ "id": "1711.00895", "version": "v1", "published": "2017-11-02T19:14:10.000Z", "updated": "2017-11-02T19:14:10.000Z", "title": "Intersections of multicurves from Dynnikov coordinates", "authors": [ "S. Öykü Yurttas", "Toby Hall" ], "comment": "9 pages", "categories": [ "math.GT" ], "abstract": "We present an algorithm for calculating the geometric intersection number of two multicurves on the $n$-punctured disk, taking as input their Dynnikov coordinates. The algorithm has complexity $O(m^2n^4)$, where $m$ is the sum of the absolute values of the Dynnikov coordinates of the two multicurves. The main ingredient is an algorithm due to Cumplido for relaxing a multicurve.", "revisions": [ { "version": "v1", "updated": "2017-11-02T19:14:10.000Z" } ], "analyses": { "subjects": [ "57M50", "57N16", "20F36" ], "keywords": [ "dynnikov coordinates", "multicurve", "geometric intersection number", "absolute values", "main ingredient" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }