{ "id": "1711.00262", "version": "v1", "published": "2017-11-01T09:18:59.000Z", "updated": "2017-11-01T09:18:59.000Z", "title": "Non-expansive bijections to the unit ball of $\\ell_1$-sum of strictly convex Banach spaces", "authors": [ "Vladimir Kadets", "Olesia Zavarzina" ], "categories": [ "math.FA" ], "abstract": "Extending recent results by Cascales, Kadets, Orihuela and Wingler (2016), Kadets and Zavarzina (2017), and Zavarzina (2017) we demonstrate that for every Banach space $X$ and every collection $Z_i, i\\in I$ of strictly convex Banach spaces every non-expansive bijection from the unit ball of $X$ to the unit ball of sum of $Z_i$ by $\\ell_1$ is an isometry.", "revisions": [ { "version": "v1", "updated": "2017-11-01T09:18:59.000Z" } ], "analyses": { "subjects": [ "46B20" ], "keywords": [ "strictly convex banach spaces", "unit ball", "non-expansive bijection", "demonstrate", "collection" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }