{ "id": "1711.00163", "version": "v1", "published": "2017-11-01T02:02:22.000Z", "updated": "2017-11-01T02:02:22.000Z", "title": "Cluster Algebras, Invariant Theory, and Kronecker Coefficients II", "authors": [ "Jiarui Fei" ], "comment": "40 pages, 20 figures, comments are welcome", "categories": [ "math.RT", "math.AC", "math.CO", "math.GR" ], "abstract": "We prove that the semi-invariant ring of the standard representation space of the $l$-flagged $m$-arrow Kronecker quiver is an upper cluster algebra for any $l,m\\in \\mathbb{N}$. The quiver and cluster are explicitly given. We prove that the quiver with its rigid potential is a polyhedral cluster model. As a consequence, to compute each Kronecker coefficient $g_{\\mu,\\nu}^\\lambda$ with $\\lambda$ at most $m$ parts, we only need to count lattice points in at most $m!$ fibre (rational) polytopes inside the ${\\rm g}$-vector cone, which is explicitly given.", "revisions": [ { "version": "v1", "updated": "2017-11-01T02:02:22.000Z" } ], "analyses": { "subjects": [ "13F60", "20C30", "16G20", "13A50", "52B20" ], "keywords": [ "kronecker coefficient", "invariant theory", "standard representation space", "arrow kronecker quiver", "upper cluster algebra" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }